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The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression
(MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in
which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear
parameters, and the linear parameters are calculated from MLR. GA-MLRritutive optimization approach

and it exploits all advantages of the genetic algorithm technique. This optimization method results from an
appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA
optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only
one strictly mathematical “tool” involved in GA-MLR. The GA-MLR approach simplifies and accelerates
considerably the optimization process because the linear parameters are not the fitted ones. Its properties are
exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-
excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed
for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism
that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalisrohaft Fre
derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently
introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring
in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the
GA method with the NR method, in which the minimum-value condition for the quadratic approximation to
%2, obtained from the Taylor series expansion%fis recovered by means of the NewteRaphson algorithm.

The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear
functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the
nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear
functions.

1. Introduction been offered and tested in the literatér& which have found
many fantastic practical applications in different problems of
decay tracésis well-known methodology in fluorescence the:‘luo;eoslclence spectroscopy of solutions and ordered molecular
spectroscopy. Many different algorithms and their numerical SYSt€Ms:

implementations designed for the global and target analyses have In our recent two articles (see refs 12 and 13) we have
discussed the application of the genetic-algorithms-based (GA)

* Corresponding author. E-mail: jjfisz@phys.uni.torun.pl. optimization approach to time-resolved polarized fluorescence

The simultaneous (global) analysis of multiple fluorescence

10.1021/jp063998e CCC: $33.50 © 2006 American Chemical Society
Published on Web 11/10/2006



12978 J. Phys. Chem. A, Vol. 110, No. 48, 2006 Fisz

spectroscopy of ordered molecular media. Genetic algorithifis globally analyzed decays), in section 3 of that reference we have
are the class of heuristic optimization methods that involve the mentioned the applicability of the GA-FOD method to multi-
basic principles of the evolutionary biology. The GA method component nonlinear model functions given by linear combina-
iteratively modifies a set of randomly generated trial population tions of the nonlinear functions, which, for example, can be
of the complete sets of the model parameters by employing inrelated to kinetic and polarized fluorescence decays (for
the reproduction process two genetic operators, i.e., crossoversolutions and ordered media) of the compounds undergoing
and mutation. At each iteration the “fitter” individuals in the excited-state processes. In such cases the linear model param-
population (i.e., those which return bettgrvalues) are kept  eters are evaluated from the multiple linear regression (MLR)
for further reproduction, and the less “fit” ones are replaced by method, and the whole algorithm combines the GA and MLR
new randomly generated individuals. This procedure is repeatedoptimizers, yelding the GA-MLR optimization method, in which
iteratively untily? reaches a predefined tolerance or the number MLR is embedded in GA.

of iterations (generations) reaches its predefined maximum. It is essentially important to mention here the variable

In ref 12 we have demonstrated the comparative numerical projection (VP) algorithr&-22(and its numerical implementation
studies of the GA and gradient expansion (GE) optimization VAPRO??) designed for the nonlinear least-squares analysis of
methods on the basis of polarized fluorescence spectroscopythe model functions that are linear combinations of nonlinear
of microscopically ordered membrane vesicles and macroscopi-functions, and in which the linear parameters are estimated from
cally ordered planar membranes, which have displayed severalthe linear least-squares methods.
very important advantages of the GA optimizer. First, in contrast ~ This method was unknown to us when submiting the
to the GE optimizer, in the GA method no initial guesses for manuscript of ref 13. VP is a very advanced mathematical
the fitted model parameters are required and only the upper andformalism. It involves the methods of nonlinear functionals,
lower limits for the model parameters have to be predefined. algebra of linear projectors, and the formalism of dbet
Second, the GA optimization method is insensitive to the local derivatives and pseudo-inverses. The VP formalism is based
minima of they? surface; i.e., the GA optimization process is on a series of theorems and lemmas, proven in ref 21, which
not “trapped” at the local minima of thg? surface. Thisisa  concern Frehet derivatives of projectors, residual vectors and
very inconvenient property of the GE method, and in such casespseudo-inverses, and which represent a very strong mathematical
the GE optimization procedure must be run several times with background of this method. An important requirement in the
different initial guesses for the fitted parameters (see the VP approach is that the nonlinear functions must be continuously
illustrative examples discussed in ref 12). A very important (at least twice) differentiable with respect to nonlinear param-
property of the GA optimizer is that it is applicable also to the eters.
optimization problems in which the model functions are not  In the VP algorithm, the nonlinear functional (which can be
differentiable in the entire space of fitted model parameters, referred to as &2 function of the linear and nonlinear model
because in the GA method no derivatives over the model parameters) is projected into the modified (variable projection)
parameters are evaluated. This is in evident contrast to the GEfunctional of a more complicated form but depends solely on
method for which such model functions represent serious nonlinear parameters. This projection converts the optimization
difficulty. Also, an important property of the GA optimizer is  procedure into the two-step one, which consists of first
that it can be assumed as a very efficient way for obtaining the optimizing the nonlinear parameters (contained in the modified
initial guesses for GE optimization (e.g., in the case when the functional) and then using their optimal values obtained for
%2 surface possess very many local minima and when this solving the least-squares problem for linear parameters, with
surface is very flat around its global minimum), leading the the application of the MoorePenrose generalized inversion
GE optimization to almost immediate convergence to the very method?'?2In VAPRO, the optimization of nonlinear param-
probable coordinates of the global minimumgffunction. eters is based on the modified Levenbekgarquardt algo-

In ref 13 we have discussed the methods for reduction of the rithm.22 Many examples of different excellent applications of
number of fitted nonlinear and linear model parameters appear-VP and VAPRO (and their modifications) are discussed in ref
ing in the nonlinear model functions. Such methods may 22.
eliminate essential problems with the “inconvenient” nonlinear  In this article we discuss in a systematic way and exemplify
and linear fitted parameters, for which the prediction of initial the combined genetic algorithm and multiple linear regression
guesses in the GE optimization or their most adequate upper(GA-MLR) optimizer designed for the analysis of nonlinear
and lower bounds in the GA optimization represents a serious model functions which are linear combinations of nonlinear
difficulty. We have discussed the combination of the GA functions. The GA-MLR optimization method is antuitive
optimization method with (a) the first-order derivative (FOS¥ treatment to nonlinear least-squares problems in which the
method (which applies to linear parameters, solely) and (b) the nonlinear and linear parameters separate. This optimizer takes
Newton—Raphson (NRY method (which applies to both linear  all advantages of the genetic algorithms and the whole method
and nonlinear parameters). In the NR method the minimum of results from an appropriate combination of two well-known
quadratic approximation tg? function (obtained from the Taylor  optimization methods. The GA-MLR optimizer does not require
series expansion) is recovered iteratively by means of the any assumption on the differentiability of the nonlinear constitu-
Newton—Raphson (NR) algorithm. According to the GA-NR ent functions. They may have arbitrary forms (i.e., they may
and GA-FOD optimization procedures, the fitted model param- by given explicitly or numerically), and they may be arbitrarily
eters are split into those that are fitted by the GA optimization complicated functions of the nonlinear parameters. These
routine and the parameters that are being calculated from,advantages of the GA-MLR optimizer result from the fact that
respectively, the NR and FOD method, embedded in the GA MLR is the only one strictly mathematical “tool” involved in
routine (i.e., GA is an outer optimizer, and FOD and NR are this optimization algorithm and from the fact that the nonlinear
the inner ones). parameters are fitted by GA optimizer that possess particularly

Although the numerical tests of the GA-FOD optimizer, useful properties.
demonstarted in ref 13, were concentrated on the global analyses In the GA-MLR optimization approach, the term “combined”
of the polarized fluorescence decays with different single has exact meaning because MLR is embedded in GA and both
amplitudes (they were the set of linear parameters in the set ofoptimizers converge simultaneously. The linear and nonlinear
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fitted parameters are estimated in parallel, i.e., at each step of2. Genetic Algorithm Combined with Multiple Linear
the GA-MLR algorithm. As the temporarily “better” values of Regression (GA-MLR)

the nonlinear parameters (e.g., the decay times) are selected, | ot s assume tha( y;) (wherei = 1, ...,N) represent the
i =4, ..,

they, together with the linear parameters (e.g., the amplitudes g o experimentally recoveraddata points and tha{gq,s,x),
at multiexponential decay) estimated from the MLR routine, given by

return a better temporal goodness of the fit.

. . . M
It is clearly seen from the above discussion that the only .
similarity between the VP and GA-MLR approaches is that they y(@:sx) = Zak aCRY @
both are designed for the same class of least-squares problems, =
in which the linear and nonlinear parameters separate. Fromis the model function, which is a linear combination of the set
the point of view of their constructions and from the point of of M nonlinear basis functionsy(q,x) of variablex and which
view of mathematical methods and tools they involve, VP and are paramatrized by vectar of nonlinear model parameters.
GA-MLR are completely different approaches. The combination parameteag form vectors = [ay, ..., auw] of
One of the simplest classes of the model functions that can !INe&r model parameters in (1). The “best” estimates (a vector

be subjected to the GA-MLR optimization method is the Pm) Of all model parameterp = [a, S.] i.n the model function
multiexponential kinetic and polarized fluorescence or transient (1)8?23;250%91?'”&85 of global minimum of the reduged
absorption decays and decay surfaces, in the case of solution§q’

9,11
and ordered medi¥: N 1Ny - y(q,s,xi))z
We here formulate a general description of the GA-MLR Xz(q,s) =S5 — 2)

optimization approach, not related to any particular optimization Vi i= 0_i2
problem, and afterward, we discuss its adaptation to the global

analysis of synthetic fluorescence decay surface for the case ofin spacep. v is the number of degrees of freedom ands the

a two-excited-state interconversion processes in solution, whichmeasurement error (standard deviation) of ittedata point.
can be referred to intramolecular charge transfer (ICT), twisted In the GA-MLR optimization approach, the GA optimizer
intramolecular charge transfer (TICT), or intramolecular proton Provides a trial population of vectofs(i.e., a trial population
transfer (PT) processes. In this example the fluorescence decayf the complete sets of the nonlinear parametersi{(a,) (k
surface is composed of 71 biexponential fluorescence decays— 1 --M)). Each trial vectoq returns the corresponding-
parametrized by 144 decay parameters., i.e., 2 decay times anddS) function of vectors of the combination parameteek
142 amplitudes. In the GA-MLR optimization method both Standing at the corresponding functib(.x), namely

decay times are the only fitted parameters (optimized by GA), 1N 1 M
and all 142 amplitudes are just calculated from the MLR method 246,59 =— Z —(y; - Zak Fk(q,x))z (3)
embedded in GA routine. By discussing this example, we want = Oi2 &

to demonstrate the simplicity and very high efficiency of the

GA-MLR optimization method. Furthermore, we want to show Formally, alla,x can be determined from the MLR method, i.e.,
that the GA-MLR optimizer when used together with the from the minimum-value condition gf(g,s) with respect tc,
efficient methods for the analysis of the kinetic fluorescence that is, front’~1°

decays for the ICT, TICT and PT processes, outlined in ref 23,

2/~
allows for almost immediate recovery of the emission bands o @s _
L ) ——=0 (4)
and the values of the kinetic rate constants, assumed in the 0s
simulations.

This condition leads to the following set of simultaneous

To make the discussion presented in this article more gqyations (which are the so-called normal equations of the least-
complete, we add a few important explanatory comments to squares problem)

the GA-NR approach, outlined in ref 13, as the method for

simultaneous optimization of linear and weakly nonlinear model M [N F(G.x) Fi(@.x) N YiFi(G.%)
parameters that occur in the same optimization problem together -, a — — = (5)
with the nonlinear parameters. GA-NR optimizer combines the k=1\1= o i= o

outer GA optimizer with the inner one NR, in which the

minimum-value condition for the quadratic approximation to Wherej = 1, ...,M, which is equivalent to the matrix equation
%2, obtained from the Taylor series expansiondfis explored As=c ©6)
by means of the NewtenRaphson algorithm. The inner
optimizer NR is designed for the problems in which the set of wheresis a column vector of the amplitudes and
separated parameters lead to nonquadratic dependepédtof

applies to linear parameters occurring in the model functions N F(a.%) F(@.x) N YiF(E.%)
that are multilinear combinations of nonlinear functions, to A= -, G = -,
weakly nonlinear parameters and to nonlinear ones. The VP = 0i = 0;

method does not distinguish the weakly nonlinear parameters .

(e.g., the quasi-linear parameters) from the nonlinear ones, anda‘ formal solution to eq 6 reads

hence, VP does not apply to the optimization problems in which g=Alc @)
one wants to distinguish between these two sets of the model

parameters. Furthermore, the VP method does not apply to theSubstituting the obtained values of the amplitudgé#nto eq 3
model functions that are multilinear combinations of nonlinear and repeating this procedure over all trial vectgrghe trial
functions. set of the values 0f%(d,3) is obtained. As temporarily the “best”
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SCHEME 1 is the model fluorescence decaydapulse excitation
\12 I@s) =3 o expl-tl) = 5 6710 (9)
k21 - 18 k= k=

k, k, paramatrized by the vector of decay ratgs= [Li, ..., Lm]
(nonlinear parameters) and the vector of corresponding ampli-
tudess = [o{”, ..., &{?] (linear parameters). In this case eq 2
become¥®

excitation
e =

ground state

vectors,§ ands in the population are considered to be those N (L (0) — 1 2
that correspond to the lowegt value in the set of aly(§,3) ) 1 (1) = 1(a,si))
obtained. The GA optimizer keeps for further reproduction those 2.8 = ; V4 (i)
vectorsg in the population that, together with the corresponding = m
vectorss (estimated from the MLR method), return beti&(d,

) values. The less “fit” vector§ are replaced by new randomly
generated individuals. This procedure is repeated iteratively until
%2 reaches a predefined tolerance or the number of iterations
(generations) reaches its predefined maximum. Finally, one
obtains the coordinates of a probable minimum value/%f

(10)

wherelc(q,s,i) is the histogram of(q,s,i) convoluted with the
d-pulse-excitation instrument response functigi) andg; =

A/1,(1) are the experiment errors within the Poisson statistics.
The GA optimizer generates randomly a trial population of
the complete sets of the decay rates (i.e., a trial set of vectors

(0,9 and its coordinategm andsy in the space of the allowed ~ @) Which take the values from the intervals bounded by their
values ofq ands. In the above optimization scheme, the GA predefined lower and upper limits, and which are used in the

and MLR routines converge simultaneously and both sets of €valuation of the corresponding convolution integrals

the model parameters are optimized in parallel. By running the t o)

GA-MLR optimizer several times (each time with a different fillt) = f,m f-t)Leyda  (k=1,..,M) (11)
seed value for the random number generator), one recovers

statistical information on the probable coordinates (a distribution For each trial vectod of the decay rates one has to minimize
of the estimates|, andsy) of the global minimum ofi2. If it the corresponding?(d,s) function of s at fixed g, i.e.

is required, one can use the values of the fitted parameters
returned by the GA optimizer as the initial guesses for the GE 2 x 1 1 . M 2
optimization method, as the final step in the optimization x(a,) Z—Z_.Um(') - Z‘ak f(1)) (12)
procedure. V51 (D) =

It is very essential to stress here Fhat the solution (8) to (6) The minimum-value condition of(§,s) with respect t, which
has rather a formal character and a highly recommended methoqS the vector of the amplitudesx standing at corresponding

for solving of the normal equations is the Gatudsrdan : . :
LT 9 . . e I convoluted histogramk(t) in 1(q,st), leads, according to eq
elimination method? To avoid the possible difficulties arising 4, to the following set of normal equations in the MLR

from the roundoff errors (when solving the normal equations)

N

. ! . optimization
or from the normal equations being very close to singular, the
singular value decomposition (SVD) is the most recommended 5 Z(C] 9 M[N £(i) fi(i) N
method for minimization of%(d,s) with respect to vectos of xS — K o — S fi)=0 (13)
the combination coefficientax in eq 3 (see ref 19 for very doy a\éa 1) k Z

detailed discussion).

wherej = 1, ...,M, which is equivalent to the matrix equation
3. lllustrative Example. Fluorescence Decay Surface in (6), and where
the Two-Excited-State Interconversion Problem
. o N £,(0) () N

To exemplify the GA-MLR optimization method, we here (= c=Y f() (14)
consider one of the simplest cases, i.e., the biexponential SE() G
fluorescence decay surface emitted by a compound undergoing
two-excited-state interconversion process (e.g., intramolecularA formal solution to eq 13 is given by the formula (8).
charge transfer (ICT), twisted intramolecular charge transfer Supstituting the recovered values of the amplitudg#to eq
(TICT) or intramolecular proton transfer (PT) process), con- 12 and repeating this procedure over all trial vectprghe trial
trolled by four kinetic rate constants, kiz, k;, andkzs, asis  set of the values 0,3 is obtained, which, together with
shown in Scheme 1. We here want to demonstrate the simplicity the trial vectorg, is subjected to further steps within the GA
and very high efficiency of the GA-MLR optimization method.  algorithm, as was discussed in the previous section.
Additionally, we want to show that the GA-MLR optimizer, In the case of a globally analyzed set of multiexponential
when used together with the efficient methods for the analysis decays, the GA optimizer modifies the nonlinear parameters
of the kinetic fluorescence decays for the ICT, TICT, and PT simultaneously in all decays, according to the assumed linking
processes, outlined in ref 23, allows for almost immediate scheme, and the linear parameters are evaluated by means of
recovery of the emission bands and the values of the rates ofthe MLR method for each individual decay.
state-to-state kinetic relaxation assumed in the simulations. For the two-excited-state problem depicted in Scheme 1, the

To make the discussion a bit more general, we begin with steady-state emission bands PS and TS and time-resolved
the application of the GA-MLR optimization approach to the fluorescence decay surface were simulated for the following
case of a single multiexponential fluorescence decay. Let usvalues of the kinetic rate constantkj™* = 5 ns,k;,™1 = 0.5
suppose that,(t) represents the histogram of an experimentally ns,k,™! = 4.7 ns andky;"! = 1 ns. The normalized shapes of
recovered multiexponential fluorescence decay and ¢{s,t) the spectral distributions of the photons emitted from both states,
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Figure 1. Simulated data: (a) assumed spectral shapes of PS and TS emission bands; (b) simulated steady-state PS, TS and effective emission
bands; (c) simulated fluorescence decay surface; (d) two examples of simulated fluorescence detays; 830 nm andiem = 650 nm.

used in the simulations, are shown in Figure la. With these with the recovered amplitudes, shown in Figure 2d. The
data we calculated the decay ratgs! = 312 ps and_,™1 = estimates of the decay ratesandL, recovered in all 50 runs
4796 ps, and the amplitudes(lerm) andax(dem) for the emission  of the GA-MLR optimizer are displayed in Figure 2e,f. They
wavelengths from 300 to 650 nm, in the step of 5 nm (see ref are very closely distributed around the simulated values and
23). The calculated intensities of steady-state bands PS afd TS, their averaged values, calculated from the series of all 50 values
normalized to unity with respect to the maximum value of the returned by GA-MLR, aré; 1 =311 (4) ps and_, 1 = 4796
effective fluorescence emission, are shown in Figure 1b. The (+6) ps. The values of;~* = 312 5) ps andL, ! = 4798
obtained decay ratds andL, and 71 pairs of the amplitudes  (113) ps we obtained from the GE analysis of the data, in which
o1(Zem) and oz(dem) were used in generating the synthetic the averaged values of all model parameters estimated from GA-

fluorescence decay surface, which is composed of 71 biexpo- R optimizer were assumed as the initial guesses in the GE
nential fluorescence decays (9) convoluted with the experimen- o5timization.

tally recovered histogram of the scattered laser pulse collected
in 1024 channels (channel width 10 ps). The synthetic fluores-
cence decay surface was normalized to set the counts numbe
at its maximum to 2x 10* counts. Different Poisson noises
were added to different constituent fluorescence decays. The ) e
obtained fluorescence decay surface and the constituent fluo-1> @nd enables us to estimate the values of the kinetic rate
rescence decays, fdem = 300 nm andiem = 650 nm, are constants. The ajgonthm o.utllned in rgf 23 is not a gene(al
shown in Figure 1c,d. The synthetic fluorescence decay surfaceMethod and applies to particular experimental cases in which
involves 144 decay parameters, from which 2 decay rates ~the emission from the PS state can be detected separately and
andL, are fitted by the GA optimizer and 142 amplitudes are Can be easily verified experimentaify(this is also displayed
calculated from the MLR method. in the example). In a more general case, in which the PS and
In the analysis of the synthetic data the population of trial TS emission bands totally overlap, the more general numerical
vectorsq = [Li, L] was set to 100 individuals and the treatments have to be applied (see the references cited in ref
predefined number of generations was set to 50. The GA-MLR 23; see also ref 26 and the references therein). According to
optimizer was run 50 times, each time with a different seed the algorithm outlined in ref 23 (see also ref 25), from the sums
value for the random number generator. The following upper and differences for the decay parameters, Le+ Lo, L1 —
and lower bounds for the fitted parameters were sat:! = Lo, a1(lem) + 02(Aem) and ay(lem) — 02(Aem), the following
[100, 1000] ps and;~! = [1100, 8000] ps. The GA-MLR relations can be derived:
optimizer implements the PIKAIA subroutirfé.

We here want to demonstrate that the combination of the GA-
p/ILR optimizer with the algorithm outlined in ref 23 enables
us to perform a fast separation of the constituent stead-state
emission bands and decay surfaces of the excited-states PS and

The final results of 10 different runs of the GA-MLR o4 (Al T (AL, X(Aem)
optimizer are presented in Figure-2d, where the histograms 1= T ol T+ o0l (15)
of »2 converge to the values very close to unity (Figure 2a) and 0y (Aem) + 0tp(er) Ay (Aem) + Co(Aen)
the histograms of the decay ratds @ndL,) converge to the 0 (Aer)ly + 0(A)L X(or)
values of the decay times almost identical to those obtained in = Lrem 2 Zrem 1 ¢ (16)

the simulation of the data (Figure 2b,c). The same deals also 2 oy (Aem) + 0x(Aer) 0y (Aem) + 0x(Aer)
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W= 2L, — L — (U; — U] (17) 1550k = Crafen) 1 Ve
I gss(len*) =1 SS(j‘em) — ?'Ss(lem) (21)

where the “true” (emission-wavelength-independent) values of
parametersU;, U, and W are defined by the appropriate where Crs(Zem) expresses the contribution 6%(1en) to the

combinations of the four kinetic rates, i.e. measured effective intensitj{len), and®
U, =k + Ky, U, =k, + Ky, W=k .k, (18) C )= X(Aor) 22
Site X(}'en*) + (al(len*) + al(}*en*)) U2

Note thatU;~1 andU,1 are the fluorescence lifetimes of both
excited states. - .
At the emission wavelengtiss at which the emission from Th? qoefﬂuents Crs(lem) and the constituent steady-state
state TS does not contribute to the detected fluorescence signalem'sSlon bands, palculated for the recovgred decay parameters,
X(Zpg = 0 and the right-hand sides of eqs 57 take constant are_ shown n Fslsgure 3d.e, Sgorrespondmgly. The recovered
values, which are the estimates of “true” valuesJaf U, and emission band$pgem andl¢(1em perfectly correspond to

W, defined by (18). According to Figure 3a,b, in the range of the simulated bands shown in Figure 1b.

the emission wavelengths 36660 nm, the quorescenc_e signal_ 4. Optimization of Linear, Weakly Nonlinear and

from the TS state does not contribute or this contribution is Nonlinear Model Parameters by Means of the GA-NR
negligible, and we obtain the following estimated “true” values  optimizer

of Uy, Uz andW: U; 1 = 453 (£4) ps,U, 1 = 825 (&7) ps

andW = 2.01 (-0.04) x 1076 ps2 . They are in agreement In this section we come back to the GA-NR algorithm intro-
with the corresponding values obtained in the simulations, i.e., duced in our recent publicatibhand mentioned in short in the
Uy ! = 455 ps,U,1 = 825 ps andV = 2.00 x 1076 ps2, Introduction. We here want to add a few important explanatory

As was discussed in ref 23 (see also ref 25), in some practical Comments on the application of the GA-NR optimizer to linear
cases, the application of the approximations resulting from the @nd weakly nonlinear model parameters that occur in the same
“high-temperature” (HT) and “low-temperature” (LT) kinetic ~OPtimization problem together with the nonlinear parameters.
limits, enables us to reduce the number of the kinetic rates in ~ Very recently, the authors of the ref 280 have presented

eqgs 18. The parameters identifying the HT and LT limits an excellent application of the GA optimization method to the
automated assignment of high-resolution spectra. By introducing
U (A9 L several improvements, they have obtained a GA-based optimi-
= = (19) zation method enabling very fast analysis of dense spectra in
U, o4(4p9 Uz Ly which very many vibronic spectra of conformers and isoto-
in our case take the valu&r = 0.91 andR_r = 0.11, and the 1/ 1/L, (ps)

closure propertyRyt + Rt = 1 holds. This result means that,
although the values of the kinetic rates assumed in the
simulations do not correspond perfectly to the HT kinetic limit
(in such case®yt = 1 andR 1 = 0), the first relation in the
HT kinetic limit is fulfilled to the first approximation, i.ek;

< k227 Hence, only three kinetic rates take the nonvanishing 02}
values in egs 18, and consequently, one can assume the valueso.ot

O/ (b)

k12_l ~ Ul—l = 453 pS,szl ~ (W/kl -1 = 1.1 ns and<2‘1 ~ 1((); 20t' 30 b40 50 1% Zot' 30 b40 50
(U — ka1)~t = 3.3 ns, according to (18), which are in agreement eneretion number eneretion number
(to the first approximation) with the values of the same 1/L, (ps) %) and (A,
parameters assumed in the simulations. Very many experimental - 4 (c) fz "—\ ()]
examples, better displaying how very useful can be the 54 1 )
application of temperature-dependent kinetic LT and HT ap- 4900 - 10 %,/
proximations in the analysis of ICT, TICT and PT processes, 4800 5 05t
are demonstrated and discussed in a very systematic way ir#700 0-0f a,/a
refs 23 and 25. 4600 —0.5F V2
Having estimated the values of andUy, the functionX(Zer) H000 sl T R
can be reconstructed from relations 15 and 16, i.e. Generation number Wavelength (nm)
1 /L (ps) . e My ps)
X(Aem) = 5[(Uy = Up)(ay(Rer) + 0o(Aer) — 300 (e > (f)
340F ]
(L1 = L)@y ler) — oled)] (20) |
etaseyeeyenysaeytyrytasssestyssassastagtytyseyey 4800 v
whereU; andU, take the estimated values indicated in Figure 3°°f 1
3a. The plot ofX(Aem)/(L1 — Ly) reflects the spectral shape of 280} 4700¢
the emission band P8 (seen in Figure 3c). KnowinX(en), 260 b , 4600k ]
one can decompose the fluorescence decays suffagg) (see 10 20 30 40 50 10 20 30 40 50
Runs of GA—MLR Runs of GA—MLR

Figure 1c) and effective steady-state emission B&iid) (see ) o
Figure 1b) into two constituent, PS and TS, decay surfaces andFigure 2. Results of the GA-MLR optimization: (a)c) 10 examples

~ . ) of the registrated histograms @#(g, %) and both decay ratds; and
steady-state emission barfdsFor example, the steady-state Ly; (d) 10 examples of recovered amplitudesior) ando(ien): (6)—

intensities of the emission bands TS and PS, i&(/er) and (f) recovered values of; and L, in all 50 runs of the GA-MLR
| T5(Zem), can be obtained from optimizer.
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600l 150 1 In the Newton-Raphson algorithm, i& is an initial guess of
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X(Aem)/ (Ly—Ly) Crs(Mem) will results in a sequence ), @, ... that converges to
TR ' T tors.
S (o) d) vec .
sl A 1 osf -"/—T—- The recursion formula (24), for the explicit form g#(g,s
N % o . %
o6k ] given by eq 2, takes the form
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Figure 3. Analysis of the decay parameters: (a, b) estimated values Cn = _Z(Yi - y(qas(J X)) 5 (27)
of Uy, U, andW; (c) reconstructed spectral shape of TS emission band; =10 Smo |
(d) coefficientCrs(dem); (€) decomposed steady-state emission bands
PS and TS. The termAs = A~c, which represents the vector of corrections

modifying vectors) into new vectorsi*b), has rather a formal
pomrers overlap, and for strongly congested spectra in dimerform, and similar to the case of the MLR optimizer, the most
systems. To accelerate the assigned fit calculations, i.e., to avoidcecommended methods for obtaining are the GaussJordan

using of the time-consuming Levenberlylarquardt algorithm, elimination or SVD method applied to the system of coupled
in ref 30 the authors have outlined the optimization method in linear equations (23), at each iteration in the NR algorithm.
which the minimum-value condition fgg? is expanded in the The conditions (4) and (23) define, in principle, the multiple

Taylor series and the model parameters are recovered iterativelyminima, maxima and saddle points gffunction, in a general
This method is not coupled with the GA optimizer. From the case. For linear problems they define just the minimuny?f
mathematical point of view, the method described in ref 30 and For nonlinear problems, if NR method is used independently
the NR method are equivalent, and this is easily seen after (though not as the inner optimizer in GA-NR), one has to make
skiping all simplifying assumptions made in the Appendix B sure that the results obtained from both conditions really
of ref 30. represent the global minimum g#, though not one of the local

If vector s represents the set of linear parameters angd-if minima, maxima or one of the saddle points. In Figure 4 we
(,9) is quadratic function oé (i.e., the problemis linear; model  show schematically g2 function of the model parametets
function is linear combination of nonlinear functions), the which contains multiple minima (min), maxima (max) and
minimum-value condition (4) for?(g,s) leads to the set of  saddle points (s), and for which the conditions (4) and (23) hold.
normal equation and the best estimates of linear parameters (i.e., From the mathematical point of view, these three categories
vectord) are obtained from the MLR method, as was discussed of the recovered values of model parameters can be distin-
in section 2. guished from the values of the second-order derivativeg.of

If ¥3(d,s) is not quadratic function of (i.e., the problem is From the point of view of reliable numerical recovery of the
nonlinear), vectok can be recovered from the minimum-value most probable global minimum of?, the data should be
condition (4) for the quadratic approximation3{d,s) and from analyzed according to the numerical strategy suggested and
the Newtor-Raphson algorithr’ Vectors may represent solely  tested in ref 12 for the case of the global analyses of polarized
linear parameters (i.e., the model function is a multi-linear fluorescence decays for the case of membrane vesicles and
combination of nonlinear functions), solely weakly nonlinear planar (macroscopically ordered) membranes, by means of the
parameters or a set of partly linear and partly weakly nonlinear GE optimizer, namely, (a) the analysis is repeated for very many

parameters. sets of initial guesses for the fitted parameters (they are scanned
The quadratic approximation gf(g,s) with respect tog — between the reasonably defined upper and lower limits) and

sy is given by eq 5 in ref 13 and has been obtained from the (b) the obtained set of? values is sorted out in sequence

Taylor series expansion gf(,s) aboutsi) at fixed vectord of between their maximum and minimum values. Such strategy

nonlinear parameters returned temporarily by the GA optimizer. enables us to obtain a revealing insight into the multidimensional
The minimum-value condition (4) for the quadratic approxima- distribution of they? values fulfilling the conditions (4) and
tion of ¥%(d,s) leads to (23), projected onto the axes corresponding to the adjustable
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q), drives the optimization toward the global minimum )gf
with respect to both sets of the fitted parameters.

Very interesting is the case whe#(4,s) is the nonquadratic
function of linear parameters. As was mentioned at the
begining of this section, such cases occur for the model functions
which are multilinear combinations of nonlinear functions. Let
us consider one of the simplest examples of such a class of the
model functions, namely,

X))

Y(@,sX) = abfy(d,,X) + ach(d,x) + bek(@sx)  (28)

Figure 4. Schematic presentation gf(a) function possessing multiple

minima, maxima and the saddle points. wheres = [a, b, c], and{;, §> andds are the vectors of nonlinear

parameters returned temporarily by the GA optimizer (they
&ontain the model parameters that occur in vegory(q,s,x)
depends linearly on each parametessjrindividually, buty?-

(G,s) is not a quadratic function of. It is important to stress
here that for weakly linear parametessll the second-order
derivatives in eq 26 take the nonzero values, in a general case.
However, ifs represents the set of linear paramet&tgd,s,x)/
PSmos, = 0 whenm = n, and #?y(q,5x)/dsmds, = 0 if m = n,

in a general case. As will be seen below, for the model functions
that are linear combinations of nonlinear functions, all second-
order partial derivatives take the zero values in eq 26. This
means that the second term in eq 26 distinguishes between the
linear, multilinear and (strongly or weakly) nonlinear model
functions ofs.

If vector s represents the set of linear parameters on which
y? depends quadratically, i.e., the model function is given by
linear combination of nonlinear functions (see eq 1), the second-
order partial derivative in (26) disappears, i®y(d,s,x)/0Sm0s,
= 0, and expression for the matrix elemeAts, simplifies to

parameters. Consequently, the most probable coordinates of th
global minimum ofy? can be obtained. In the case of NR
optimization method, the recovered sefdtontains the values

of 2 that relate to multiple minima, maxima and saddle points.
This is in contrast to GE optimizer because this optimizer
ignores all maxima and saddle points of the surface.
Therefore, a complete and realiable data analysis by means o
the NR algorithm requires much denser grid of the initial guesses
for the fitted parameters, as compared to the GE optimizer.
Below we discuss this point for the case of the GA-NR
optimizer, in which NR algorithm is the inner optimizer
controlled by the outer one GA.

If the NR method is embedded in the GA optimizer (i.e.,
NR is the inner optimizer in the GA-NR method), the GA
optimizer provides a trial population of vectaogs(i.e., a trial
population of the complete sets of nonlinear parameters in
y(§,5,X)) and also a trial population of the complete sets of initial
guesses of linear and/or weakly nonlinear parametsr&ach
trial vectorg returns the corresponding(d,s) function of vector N1 3y(q,S,Xi)‘ 3y(q,S,Xi)‘

s. For the predefined number of iterations to be performed by A= — (29)

the NR algorithm, the correspondig set of vect®rs obtained
from the optimization based on the recursion formula (25). Once
both populations of vector§ and 3 are obtained, the core-
sponding set of%(g,5) values is known automatically and is
subjected to further steps of the GA optimizer, as was outlined
in section 2.

The application of NR optimizer to linear or weakly nonlinear y(§,s,X) = aF(§,x) (30)
parameters may accelerate the convergence of the GA method, ) .
as distinct from the case when all model parameters are treated/Vith this assumptiond andc become the scalasandc, and
as if they were nonlinear. It is expected that in such cases the N
GA-NR optimizer will converge at much smaller populations 102 v F(6.%)
of the complete sets of the model parameters and a much smaller £ i ' _
number of generations will be performed by GA optimizer. The Altc=———— 30 (31)
application of this method to the model parameters of an N o o
effectively higher “degree” of the nonlinearity, or just to 1/o;"F(8.%)
nonlinear parameters, will lead to much slower convergence of =
the GA-NR optimizer as compared to the case when they are
optimized directly by the outer optimizer (GA).

In the above proposed algorithm, the initial guessgare N
selected by the GA optimizer (in principle they are fitted by Zl/oizyi F(@,%)
GA) because, in a general case, an external prediction of their 0+1) — 0) o I=
right values may represent a serious difficulty. Furthermore, a’v=a'+Ac= -~ (32)
selection of the initial guesses far by the GA algorithm 1. 2F (6% )2
minimizes the risk of trappi imiza- Lo 'H(@x)
pping the convergence of the optimiza
tion process at a local minimum @f with respect ts because,
in this case, a greater number of initial guessgs taken into From the above obtained recursion formula two very important
account simultaneously in the GA optimization method. For the conclusions can be drawn. First, for linear parameters the NR
same reason, the recovered “best” estimatewiill describe algorithm converges after the first iteration (i.e., any further
just the minimum ofy? with respect tes, though not one of the iteration returns the same value of the recovered linear parameter
local maxima or one of the saddle points. In other words, the because the value af*? does not depend on the former value
GA optimizer, by testing and modifying simultaneously a greater a®, according to (32)). Second, the values of initial guesses for
number of vectorsy (with the same parallel process for vectors the linear parameters may be chosen in an arbitrary way because

= Oiz 9Sm, ‘m‘) 9s, ‘m‘)

and the expression fai, remains unchanged.
Let us assume th&{{,s,x) contains a single linear parameter
a, i.e.

Consequently, the recursion formula (25) becomes
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they do not effect the values of the optimized linear parameters It has to be noted here that the GA-MLR and GA-NR
in the NR algorithm (i.e.al* does not depend aa#) begining optimization methods are not the universal algorithms. Genetic
with the first iteration). These conclusions have general meaning algorithms, likewise the gradient expansion optimization method,
and they hold for a general form g{6,s,x) given by eq 1. As apart from their intersting advantages, possess also some
is seen from the above, for the optimization problems in which disadvantages. For example, for particular shapes ofythe

»? depends quadratically on linear paremetgershe GA-NR surface in the space of fitted model parameters, the GA

and GA-MLR optimizers are equivalent. optimizer converges very slowly. This happens in most of the
cases when this surface is very flat, and thereby, the convergence

5. Discussion of GA is very hardly achieved. In all such cases the GE

optimization method is much more efficient. In such cases GA-
In this article we have discussed and exemplified the MLR and GA-NR optimizers can be used for obtaining a set of
combined genetic algorithms (GA) and multiple linear regression “good” initial guesses for the GE optimization.

(MLR) optimization approach (GA-MLR) that applies to .
nonlinear optimization problems, in which the nonlinear model Acknowledgment. This work was supported by the Rector
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