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The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression
(MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in
which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear
parameters, and the linear parameters are calculated from MLR. GA-MLR is anintuitiVeoptimization approach
and it exploits all advantages of the genetic algorithm technique. This optimization method results from an
appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA
optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only
one strictly mathematical “tool” involved in GA-MLR. The GA-MLR approach simplifies and accelerates
considerably the optimization process because the linear parameters are not the fitted ones. Its properties are
exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-
excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed
for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism
that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fre´chet
derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently
introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring
in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the
GA method with the NR method, in which the minimum-value condition for the quadratic approximation to
ø2, obtained from the Taylor series expansion ofø2, is recovered by means of the Newton-Raphson algorithm.
The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear
functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the
nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear
functions.

1. Introduction

The simultaneous (global) analysis of multiple fluorescence
decay traces1 is well-known methodology in fluorescence
spectroscopy. Many different algorithms and their numerical
implementations designed for the global and target analyses have

been offered and tested in the literature,2-9 which have found
many fantastic practical applications in different problems of
the fluorescence spectroscopy of solutions and ordered molecular
systems.10,11

In our recent two articles (see refs 12 and 13) we have
discussed the application of the genetic-algorithms-based (GA)
optimization approach to time-resolved polarized fluorescence* Corresponding author. E-mail: jjfisz@phys.uni.torun.pl.
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spectroscopy of ordered molecular media. Genetic algorithms14-16

are the class of heuristic optimization methods that involve the
basic principles of the evolutionary biology. The GA method
iteratively modifies a set of randomly generated trial population
of the complete sets of the model parameters by employing in
the reproduction process two genetic operators, i.e., crossover
and mutation. At each iteration the “fitter” individuals in the
population (i.e., those which return betterø2 values) are kept
for further reproduction, and the less “fit” ones are replaced by
new randomly generated individuals. This procedure is repeated
iteratively untilø2 reaches a predefined tolerance or the number
of iterations (generations) reaches its predefined maximum.

In ref 12 we have demonstrated the comparative numerical
studies of the GA and gradient expansion (GE) optimization
methods on the basis of polarized fluorescence spectroscopy
of microscopically ordered membrane vesicles and macroscopi-
cally ordered planar membranes, which have displayed several
very important advantages of the GA optimizer. First, in contrast
to the GE optimizer, in the GA method no initial guesses for
the fitted model parameters are required and only the upper and
lower limits for the model parameters have to be predefined.
Second, the GA optimization method is insensitive to the local
minima of theø2 surface; i.e., the GA optimization process is
not “trapped” at the local minima of theø2 surface. This is a
very inconvenient property of the GE method, and in such cases
the GE optimization procedure must be run several times with
different initial guesses for the fitted parameters (see the
illustrative examples discussed in ref 12). A very important
property of the GA optimizer is that it is applicable also to the
optimization problems in which the model functions are not
differentiable in the entire space of fitted model parameters,
because in the GA method no derivatives over the model
parameters are evaluated. This is in evident contrast to the GE
method for which such model functions represent serious
difficulty. Also, an important property of the GA optimizer is
that it can be assumed as a very efficient way for obtaining the
initial guesses for GE optimization (e.g., in the case when the
ø2 surface possess very many local minima and when this
surface is very flat around its global minimum), leading the
GE optimization to almost immediate convergence to the very
probable coordinates of the global minimum ofø2 function.

In ref 13 we have discussed the methods for reduction of the
number of fitted nonlinear and linear model parameters appear-
ing in the nonlinear model functions. Such methods may
eliminate essential problems with the “inconvenient” nonlinear
and linear fitted parameters, for which the prediction of initial
guesses in the GE optimization or their most adequate upper
and lower bounds in the GA optimization represents a serious
difficulty. We have discussed the combination of the GA
optimization method with (a) the first-order derivative (FOD)17,18

method (which applies to linear parameters, solely) and (b) the
Newton-Raphson (NR)17 method (which applies to both linear
and nonlinear parameters). In the NR method the minimum of
quadratic approximation toø2 function (obtained from the Taylor
series expansion) is recovered iteratively by means of the
Newton-Raphson (NR) algorithm. According to the GA-NR
and GA-FOD optimization procedures, the fitted model param-
eters are split into those that are fitted by the GA optimization
routine and the parameters that are being calculated from,
respectively, the NR and FOD method, embedded in the GA
routine (i.e., GA is an outer optimizer, and FOD and NR are
the inner ones).

Although the numerical tests of the GA-FOD optimizer,
demonstarted in ref 13, were concentrated on the global analyses
of the polarized fluorescence decays with different single
amplitudes (they were the set of linear parameters in the set of

globally analyzed decays), in section 3 of that reference we have
mentioned the applicability of the GA-FOD method to multi-
component nonlinear model functions given by linear combina-
tions of the nonlinear functions, which, for example, can be
related to kinetic and polarized fluorescence decays (for
solutions and ordered media) of the compounds undergoing
excited-state processes. In such cases the linear model param-
eters are evaluated from the multiple linear regression (MLR)
method, and the whole algorithm combines the GA and MLR
optimizers, yelding the GA-MLR optimization method, in which
MLR is embedded in GA.

It is essentially important to mention here the variable
projection (VP) algorithm21,22(and its numerical implementation
VAPRO22) designed for the nonlinear least-squares analysis of
the model functions that are linear combinations of nonlinear
functions, and in which the linear parameters are estimated from
the linear least-squares methods.

This method was unknown to us when submiting the
manuscript of ref 13. VP is a very advanced mathematical
formalism. It involves the methods of nonlinear functionals,
algebra of linear projectors, and the formalism of Fre´chet
derivatives and pseudo-inverses. The VP formalism is based
on a series of theorems and lemmas, proven in ref 21, which
concern Fre´chet derivatives of projectors, residual vectors and
pseudo-inverses, and which represent a very strong mathematical
background of this method. An important requirement in the
VP approach is that the nonlinear functions must be continuously
(at least twice) differentiable with respect to nonlinear param-
eters.

In the VP algorithm, the nonlinear functional (which can be
referred to as aø2 function of the linear and nonlinear model
parameters) is projected into the modified (variable projection)
functional of a more complicated form but depends solely on
nonlinear parameters. This projection converts the optimization
procedure into the two-step one, which consists of first
optimizing the nonlinear parameters (contained in the modified
functional) and then using their optimal values obtained for
solving the least-squares problem for linear parameters, with
the application of the Moore-Penrose generalized inversion
method.21,22 In VAPRO, the optimization of nonlinear param-
eters is based on the modified Levenberg-Marquardt algo-
rithm.22 Many examples of different excellent applications of
VP and VAPRO (and their modifications) are discussed in ref
22.

In this article we discuss in a systematic way and exemplify
the combined genetic algorithm and multiple linear regression
(GA-MLR) optimizer designed for the analysis of nonlinear
model functions which are linear combinations of nonlinear
functions. The GA-MLR optimization method is anintuitiVe
treatment to nonlinear least-squares problems in which the
nonlinear and linear parameters separate. This optimizer takes
all advantages of the genetic algorithms and the whole method
results from an appropriate combination of two well-known
optimization methods. The GA-MLR optimizer does not require
any assumption on the differentiability of the nonlinear constitu-
ent functions. They may have arbitrary forms (i.e., they may
by given explicitly or numerically), and they may be arbitrarily
complicated functions of the nonlinear parameters. These
advantages of the GA-MLR optimizer result from the fact that
MLR is the only one strictly mathematical “tool” involved in
this optimization algorithm and from the fact that the nonlinear
parameters are fitted by GA optimizer that possess particularly
useful properties.

In the GA-MLR optimization approach, the term “combined”
has exact meaning because MLR is embedded in GA and both
optimizers converge simultaneously. The linear and nonlinear
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fitted parameters are estimated in parallel, i.e., at each step of
the GA-MLR algorithm. As the temporarily “better” values of
the nonlinear parameters (e.g., the decay times) are selected,
they, together with the linear parameters (e.g., the amplitudes
at multiexponential decay) estimated from the MLR routine,
return a better temporal goodness of the fit.

It is clearly seen from the above discussion that the only
similarity between the VP and GA-MLR approaches is that they
both are designed for the same class of least-squares problems,
in which the linear and nonlinear parameters separate. From
the point of view of their constructions and from the point of
view of mathematical methods and tools they involve, VP and
GA-MLR are completely different approaches.

One of the simplest classes of the model functions that can
be subjected to the GA-MLR optimization method is the
multiexponential kinetic and polarized fluorescence or transient
absorption decays and decay surfaces, in the case of solutions
and ordered media.10,11

We here formulate a general description of the GA-MLR
optimization approach, not related to any particular optimization
problem, and afterward, we discuss its adaptation to the global
analysis of synthetic fluorescence decay surface for the case of
a two-excited-state interconversion processes in solution, which
can be referred to intramolecular charge transfer (ICT), twisted
intramolecular charge transfer (TICT), or intramolecular proton
transfer (PT) processes. In this example the fluorescence decay
surface is composed of 71 biexponential fluorescence decays
parametrized by 144 decay parameters., i.e., 2 decay times and
142 amplitudes. In the GA-MLR optimization method both
decay times are the only fitted parameters (optimized by GA),
and all 142 amplitudes are just calculated from the MLR method
embedded in GA routine. By discussing this example, we want
to demonstrate the simplicity and very high efficiency of the
GA-MLR optimization method. Furthermore, we want to show
that the GA-MLR optimizer when used together with the
efficient methods for the analysis of the kinetic fluorescence
decays for the ICT, TICT and PT processes, outlined in ref 23,
allows for almost immediate recovery of the emission bands
and the values of the kinetic rate constants, assumed in the
simulations.

To make the discussion presented in this article more
complete, we add a few important explanatory comments to
the GA-NR approach, outlined in ref 13, as the method for
simultaneous optimization of linear and weakly nonlinear model
parameters that occur in the same optimization problem together
with the nonlinear parameters. GA-NR optimizer combines the
outer GA optimizer with the inner one NR, in which the
minimum-value condition for the quadratic approximation to
ø2, obtained from the Taylor series expansion ofø2, is explored
by means of the Newton-Raphson algorithm. The inner
optimizer NR is designed for the problems in which the set of
separated parameters lead to nonquadratic dependence ofø2. It
applies to linear parameters occurring in the model functions
that are multilinear combinations of nonlinear functions, to
weakly nonlinear parameters and to nonlinear ones. The VP
method does not distinguish the weakly nonlinear parameters
(e.g., the quasi-linear parameters) from the nonlinear ones, and
hence, VP does not apply to the optimization problems in which
one wants to distinguish between these two sets of the model
parameters. Furthermore, the VP method does not apply to the
model functions that are multilinear combinations of nonlinear
functions.

2. Genetic Algorithm Combined with Multiple Linear
Regression (GA-MLR)

Let us assume that (xi, yi) (wherei ) 1, ...,N) represent the
set of experimentally recoveredN data points and thaty(q,s,x),
given by

is the model function, which is a linear combination of the set
of M nonlinear basis functionsFk(q,x) of variablex and which
are paramatrized by vectorq of nonlinear model parameters.
The combination parametersak form vectors ) [a1, ..., aM] of
linear model parameters in (1). The “best” estimates (a vector
pm) of all model parametersp ) [q, s] in the model function
(1) are the coordinates of global minimum of the reducedø2-
(q,s) function18,19

in spacep. νf is the number of degrees of freedom andσi is the
measurement error (standard deviation) of theith data point.

In the GA-MLR optimization approach, the GA optimizer
provides a trial population of vectorsq̃ (i.e., a trial population
of the complete sets of the nonlinear parameters inFk(q,x) (k
) 1, ...,M)). Each trial vectorq̃ returns the correspondingø2-
(q̃,s) function of vectors of the combination parametersak

standing at the corresponding functionFk(q̃,x), namely

Formally, allak can be determined from the MLR method, i.e.,
from the minimum-value condition ofø2(q̃,s) with respect tos,
that is, from17-19

This condition leads to the following set of simultaneous
equations (which are the so-called normal equations of the least-
squares problem)

wherej ) 1, ...,M, which is equivalent to the matrix equation

wheres is a column vector of the amplitudesRk and

A formal solution to eq 6 reads

Substituting the obtained values of the amplitudesRk into eq 3
and repeating this procedure over all trial vectorsq̃, the trial
set of the values ofø2(q̃,s̃) is obtained. As temporarily the “best”

y(q,s,x) ) ∑
k)1

M

ak Fk(q,x) (1)

ø2(q,s) )
1

νf
∑
i )1

N (yi - y(q,s,xi))
2

σi
2

(2)

ø2(q̃,s) )
1

νf
∑
i)1

N 1

σi
2

(yi - ∑
k)1

M

ak Fk(q̃,x))2 (3)

∂ø2(q̃,s)
∂s

) 0 (4)

∑
k)1

M (∑i)1

N Fj(q̃,xi) Fk(q̃,xi)

σi
2 ) ak - ∑

i)1

N yiFj(q̃,xi)

σi
2

) 0 (5)

As ) c (6)

Ajk ) ∑
i)1

N Fk(q̃,xi) Fj(q̃,xi)

σi
2

cj ) ∑
i)1

N yiFj(q̃,xi)

σi
2

(7)

s̃ ) A-1c (8)
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vectors,q̃ and s̃ in the population are considered to be those
that correspond to the lowestø2 value in the set of allø2(q̃,s̃)
obtained. The GA optimizer keeps for further reproduction those
vectorsq̃ in the population that, together with the corresponding
vectorss̃ (estimated from the MLR method), return betterø2(q̃,
s̃) values. The less “fit” vectorsq̃ are replaced by new randomly
generated individuals. This procedure is repeated iteratively until
ø2 reaches a predefined tolerance or the number of iterations
(generations) reaches its predefined maximum. Finally, one
obtains the coordinates of a probable minimum value ofø2-
(q,s) and its coordinatesqm andsm in the space of the allowed
values ofq ands. In the above optimization scheme, the GA
and MLR routines converge simultaneously and both sets of
the model parameters are optimized in parallel. By running the
GA-MLR optimizer several times (each time with a different
seed value for the random number generator), one recovers
statistical information on the probable coordinates (a distribution
of the estimatesqm andsm) of the global minimum ofø2. If it
is required, one can use the values of the fitted parameters
returned by the GA optimizer as the initial guesses for the GE
optimization method, as the final step in the optimization
procedure.

It is very essential to stress here that the solution (8) to (6)
has rather a formal character and a highly recommended method
for solving of the normal equations is the Gauss-Jordan
elimination method.19 To avoid the possible difficulties arising
from the roundoff errors (when solving the normal equations)
or from the normal equations being very close to singular, the
singular value decomposition (SVD) is the most recommended
method for minimization ofø2(q̃,s) with respect to vectors of
the combination coefficientsak in eq 3 (see ref 19 for very
detailed discussion).

3. Illustrative Example. Fluorescence Decay Surface in
the Two-Excited-State Interconversion Problem

To exemplify the GA-MLR optimization method, we here
consider one of the simplest cases, i.e., the biexponential
fluorescence decay surface emitted by a compound undergoing
two-excited-state interconversion process (e.g., intramolecular
charge transfer (ICT), twisted intramolecular charge transfer
(TICT) or intramolecular proton transfer (PT) process), con-
trolled by four kinetic rate constantsk1, k12, k2, andk21, as is
shown in Scheme 1. We here want to demonstrate the simplicity
and very high efficiency of the GA-MLR optimization method.
Additionally, we want to show that the GA-MLR optimizer,
when used together with the efficient methods for the analysis
of the kinetic fluorescence decays for the ICT, TICT, and PT
processes, outlined in ref 23, allows for almost immediate
recovery of the emission bands and the values of the rates of
state-to-state kinetic relaxation assumed in the simulations.

To make the discussion a bit more general, we begin with
the application of the GA-MLR optimization approach to the
case of a single multiexponential fluorescence decay. Let us
suppose thatIm(t) represents the histogram of an experimentally
recovered multiexponential fluorescence decay and thatIc(q,s,t)

is the model fluorescence decay atδ-pulse excitation

paramatrized by the vector of decay ratesq ) [L1, ..., LM]
(nonlinear parameters) and the vector of corresponding ampli-
tudess ) [R1

(δ), ..., RM
(δ)] (linear parameters). In this case eq 2

becomes20

whereIc(q,s,i) is the histogram ofI(q,s,i) convoluted with the
δ-pulse-excitation instrument response functionIr(i) andσi )

xIm(i) are the experiment errors within the Poisson statistics.
The GA optimizer generates randomly a trial population of

the complete sets of the decay rates (i.e., a trial set of vectors
q̃), which take the values from the intervals bounded by their
predefined lower and upper limits, and which are used in the
evaluation of the corresponding convolution integrals

For each trial vectorq̃ of the decay rates one has to minimize
the correspondingø2(q̃,s) function of s at fixed q̃, i.e.

The minimum-value condition ofø2(q̃,s) with respect tos, which
is the vector of the amplitudesRk standing at corresponding
convoluted histogramsfk(t) in Ic(q,s,t), leads, according to eq
4, to the following set of normal equations in the MLR
optimization

wherej ) 1, ...,M, which is equivalent to the matrix equation
(6), and where

A formal solution to eq 13 is given by the formula (8).
Substituting the recovered values of the amplitudesRk into eq
12 and repeating this procedure over all trial vectorsq̃, the trial
set of the values ofø2(q̃,s̃) is obtained, which, together with
the trial vectorq̃, is subjected to further steps within the GA
algorithm, as was discussed in the previous section.

In the case of a globally analyzed set of multiexponential
decays, the GA optimizer modifies the nonlinear parameters
simultaneously in all decays, according to the assumed linking
scheme, and the linear parameters are evaluated by means of
the MLR method for each individual decay.

For the two-excited-state problem depicted in Scheme 1, the
steady-state emission bands PS and TS and time-resolved
fluorescence decay surface were simulated for the following
values of the kinetic rate constants:k1

-1 ) 5 ns,k12
-1 ) 0.5

ns,k2
-1 ) 4.7 ns andk21

-1 ) 1 ns. The normalized shapes of
the spectral distributions of the photons emitted from both states,

SCHEME 1

I(q,s,t) ) ∑
k)1

M

Rk
(δ) exp(-tLk) ) ∑

k)1

M

Rk
(δ)f k

(δ)(t) (9)

ø2(q,s) )
1

νf
∑
i)1

N (Im(i) - Ic(q,s,i))2

Im(i)
(10)

fk(t) ) ∫-∞

t
f k

(δ)(t-t′) Ir(t′) dt′ (k ) 1, ...,M) (11)

ø2(q̃,s) )
1

νf
∑
i)1

N 1

Im(i)
(Im(i) - ∑

k)1

M

Rk fk(i))
2 (12)

∂ø2(q̃,s)

∂Rj

) ∑
k)1

M (∑
i)1

N fj(i) fk(i)

Im(i) )Rk - ∑
i)1

N

fj(i) ) 0 (13)

Ajk ) ∑
i)1

N fk(i) fj(i)

Im(i)
cj ) ∑

i)1

N

fj(i) (14)
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used in the simulations, are shown in Figure 1a. With these
data we calculated the decay ratesL1

-1 ) 312 ps andL2
-1 )

4796 ps, and the amplitudesR1(λem) andR2(λem) for the emission
wavelengths from 300 to 650 nm, in the step of 5 nm (see ref
23). The calculated intensities of steady-state bands PS and TS,23

normalized to unity with respect to the maximum value of the
effective fluorescence emission, are shown in Figure 1b. The
obtained decay ratesL1 andL2 and 71 pairs of the amplitudes
R1(λem) and R2(λem) were used in generating the synthetic
fluorescence decay surface, which is composed of 71 biexpo-
nential fluorescence decays (9) convoluted with the experimen-
tally recovered histogram of the scattered laser pulse collected
in 1024 channels (channel width 10 ps). The synthetic fluores-
cence decay surface was normalized to set the counts number
at its maximum to 2× 104 counts. Different Poisson noises
were added to different constituent fluorescence decays. The
obtained fluorescence decay surface and the constituent fluo-
rescence decays, forλem ) 300 nm andλem ) 650 nm, are
shown in Figure 1c,d. The synthetic fluorescence decay surface
involves 144 decay parameters, from which 2 decay ratesL1

andL2 are fitted by the GA optimizer and 142 amplitudes are
calculated from the MLR method.

In the analysis of the synthetic data the population of trial
vectors q ) [L1, L2] was set to 100 individuals and the
predefined number of generations was set to 50. The GA-MLR
optimizer was run 50 times, each time with a different seed
value for the random number generator. The following upper
and lower bounds for the fitted parameters were set:L1

-1 )
[100, 1000] ps andL2

-1 ) [1100, 8000] ps. The GA-MLR
optimizer implements the PIKAIA subroutine.24

The final results of 10 different runs of the GA-MLR
optimizer are presented in Figure 2a-d, where the histograms
of ø2 converge to the values very close to unity (Figure 2a) and
the histograms of the decay rates (L1 andL2) converge to the
values of the decay times almost identical to those obtained in
the simulation of the data (Figure 2b,c). The same deals also

with the recovered amplitudes, shown in Figure 2d. The
estimates of the decay ratesL1 andL2 recovered in all 50 runs
of the GA-MLR optimizer are displayed in Figure 2e,f. They
are very closely distributed around the simulated values and
their averaged values, calculated from the series of all 50 values
returned by GA-MLR, areL1

-1 ) 311 ((4) ps andL2
-1 ) 4796

((6) ps. The values ofL1
-1 ) 312 ((5) ps andL2

-1 ) 4798
((13) ps we obtained from the GE analysis of the data, in which
the averaged values of all model parameters estimated from GA-
MLR optimizer were assumed as the initial guesses in the GE
optimization.

We here want to demonstrate that the combination of the GA-
MLR optimizer with the algorithm outlined in ref 23 enables
us to perform a fast separation of the constituent stead-state
emission bands and decay surfaces of the excited-states PS and
TS and enables us to estimate the values of the kinetic rate
constants. The algorithm outlined in ref 23 is not a general
method and applies to particular experimental cases in which
the emission from the PS state can be detected separately and
can be easily verified experimentally23 (this is also displayed
in the example). In a more general case, in which the PS and
TS emission bands totally overlap, the more general numerical
treatments have to be applied (see the references cited in ref
23; see also ref 26 and the references therein). According to
the algorithm outlined in ref 23 (see also ref 25), from the sums
and differences for the decay parameters, i.e.,L1 + L2, L1 -
L2, R1(λem) + R2(λem) and R1(λem) - R2(λem), the following
relations can be derived:

Figure 1. Simulated data: (a) assumed spectral shapes of PS and TS emission bands; (b) simulated steady-state PS, TS and effective emission
bands; (c) simulated fluorescence decay surface; (d) two examples of simulated fluorescence decays, forλem ) 300 nm andλem ) 650 nm.

U1 )
R1(λem)L1 + R2(λem)L2

R1(λem) + R2(λem)
+

X(λem)

R1(λem) + R2(λem)
(15)

U2 )
R1(λem)L2 + R2(λem)L1

R1(λem) + R2(λem)
-

X(λem)

R1(λem) + R2(λem)
(16)
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where the “true” (emission-wavelength-independent) values of
parametersU1, U2 and W are defined by the appropriate
combinations of the four kinetic rates, i.e.

Note thatU1
-1 andU2

-1 are the fluorescence lifetimes of both
excited states.

At the emission wavelengthsλPS, at which the emission from
state TS does not contribute to the detected fluorescence signal,
X(λPS) ) 0 and the right-hand sides of eqs 5-17 take constant
values, which are the estimates of “true” values ofU1, U2 and
W, defined by (18). According to Figure 3a,b, in the range of
the emission wavelengths 300-360 nm, the fluorescence signal
from the TS state does not contribute or this contribution is
negligible, and we obtain the following estimated “true” values
of U1, U2 andW: U1

-1 = 453 ((4) ps,U2
-1 = 825 ((7) ps

and W = 2.01 ((0.04) × 10-6 ps-2 . They are in agreement
with the corresponding values obtained in the simulations, i.e.,
U1

-1 = 455 ps,U2
-1 = 825 ps andW = 2.00× 10-6 ps-2.

As was discussed in ref 23 (see also ref 25), in some practical
cases, the application of the approximations resulting from the
“high-temperature” (HT) and “low-temperature” (LT) kinetic
limits, enables us to reduce the number of the kinetic rates in
eqs 18. The parameters identifying the HT and LT limits

in our case take the valuesRHT ) 0.91 andRLT ) 0.11, and the
closure propertyRHT + RLT = 1 holds. This result means that,
although the values of the kinetic rates assumed in the
simulations do not correspond perfectly to the HT kinetic limit
(in such casesRHT = 1 andRLT = 0), the first relation in the
HT kinetic limit is fulfilled to the first approximation, i.e.,k1

, k12.27 Hence, only three kinetic rates take the nonvanishing
values in eqs 18, and consequently, one can assume the values
k12

-1 = U1
-1 ) 453 ps,k21

-1 = (W/k12)-1 ) 1.1 ns andk2
-1 =

(U2 - k21)-1 ) 3.3 ns, according to (18), which are in agreement
(to the first approximation) with the values of the same
parameters assumed in the simulations. Very many experimental
examples, better displaying how very useful can be the
application of temperature-dependent kinetic LT and HT ap-
proximations in the analysis of ICT, TICT and PT processes,
are demonstrated and discussed in a very systematic way in
refs 23 and 25.

Having estimated the values ofU1 andU2, the functionX(λem)
can be reconstructed from relations 15 and 16, i.e.

whereU1 andU2 take the estimated values indicated in Figure
3a. The plot ofX(λem)/(L1 - L2) reflects the spectral shape of
the emission band TS23 (seen in Figure 3c). KnowingX(λem),
one can decompose the fluorescence decays surfaceI(λem,t) (see
Figure 1c) and effective steady-state emission bandIss(λem) (see
Figure 1b) into two constituent, PS and TS, decay surfaces and
steady-state emission bands.23 For example, the steady-state
intensities of the emission bands TS and PS, i.e.,I PS

ss(λem) and
I TS

ss (λem), can be obtained from

whereCTS(λem) expresses the contribution ofI TS
ss (λem) to the

measured effective intensityIss(λem), and23

The coefficientsCTS(λem) and the constituent steady-state
emission bands, calculated for the recovered decay parameters,
are shown in Figure 3d,e, correspondingly. The recovered
emission bandsI PS

ss(λem) and I TS
ss (λem) perfectly correspond to

the simulated bands shown in Figure 1b.

4. Optimization of Linear, Weakly Nonlinear and
Nonlinear Model Parameters by Means of the GA-NR
Optimizer

In this section we come back to the GA-NR algorithm intro-
duced in our recent publication13 and mentioned in short in the
Introduction. We here want to add a few important explanatory
comments on the application of the GA-NR optimizer to linear
and weakly nonlinear model parameters that occur in the same
optimization problem together with the nonlinear parameters.

Very recently, the authors of the ref 28-30 have presented
an excellent application of the GA optimization method to the
automated assignment of high-resolution spectra. By introducing
several improvements, they have obtained a GA-based optimi-
zation method enabling very fast analysis of dense spectra in
which very many vibronic spectra of conformers and isoto-

W ) 1
4
[(L1 - L2)

2 - (U1 - U2)
2] (17)

U1 ) k1 + k12 U2 ) k2 + k21 W ) k12k21 (18)

RHT )
U1 R2(λPS)

U2 R1(λPS)
RLT )

U1 L2

U2 L1
(19)

X(λem) ) 1
2
[(U1 - U2)(R1(λem) + R2(λem)) -

(L1 - L2)(R1(λem) - R2(λem))] (20)

Figure 2. Results of the GA-MLR optimization: (a)-(c) 10 examples
of the registrated histograms ofø2(q̃, s̃) and both decay ratesL1 and
L2; (d) 10 examples of recovered amplitudesR1(λem) andR2(λem); (e)-
(f) recovered values ofL1 and L2 in all 50 runs of the GA-MLR
optimizer.

I TS
ss (λem) ) CTS(λem) I ss(λem)

I PS
ss(λem) ) I ss(λem) - I TS

ss (λem) (21)

CTS(λem) )
X(λem)

X(λem) + (R1(λem) + R1(λem)) U2

(22)
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pomrers overlap, and for strongly congested spectra in dimer
systems. To accelerate the assigned fit calculations, i.e., to avoid
using of the time-consuming Levenberg-Marquardt algorithm,
in ref 30 the authors have outlined the optimization method in
which the minimum-value condition forø2 is expanded in the
Taylor series and the model parameters are recovered iteratively.
This method is not coupled with the GA optimizer. From the
mathematical point of view, the method described in ref 30 and
the NR method are equivalent, and this is easily seen after
skiping all simplifying assumptions made in the Appendix B
of ref 30.

If vector s represents the set of linear parameters and ifø2-
(q̃,s) is quadratic function ofs (i.e., the problem is linear; model
function is linear combination of nonlinear functions), the
minimum-value condition (4) forø2(q̃,s) leads to the set of
normal equation and the best estimates of linear parameters (i.e.,
vectors̃) are obtained from the MLR method, as was discussed
in section 2.

If ø2(q̃,s) is not quadratic function ofs (i.e., the problem is
nonlinear), vectors̃ can be recovered from the minimum-value
condition (4) for the quadratic approximation ofø2(q̃,s) and from
the Newton-Raphson algorithm.17 Vectorsmay represent solely
linear parameters (i.e., the model function is a multi-linear
combination of nonlinear functions), solely weakly nonlinear
parameters or a set of partly linear and partly weakly nonlinear
parameters.

The quadratic approximation ofø2(q̃,s) with respect to (s -
s(j)) is given by eq 5 in ref 13 and has been obtained from the
Taylor series expansion ofø2(q̃,s) abouts(j) at fixed vectorq̃ of
nonlinear parameters returned temporarily by the GA optimizer.
The minimum-value condition (4) for the quadratic approxima-
tion of ø2(q̃,s) leads to

In the Newton-Raphson algorithm, ifs0 is an initial guess of
s̃, the sequential calls of the following recursion formula13,17

will results in a sequence ofs(1), s(2), ... that converges to
vector s̃.

The recursion formula (24), for the explicit form ofø2(q̃,s)
given by eq 2, takes the form

where

and

The term∆s) A-1c, which represents the vector of corrections
modifying vectors(j) into new vectors(j+1), has rather a formal
form, and similar to the case of the MLR optimizer, the most
recommended methods for obtaining∆s are the Gauss-Jordan
elimination or SVD method applied to the system of coupled
linear equations (23), at each iteration in the NR algorithm.

The conditions (4) and (23) define, in principle, the multiple
minima, maxima and saddle points ofø2 function, in a general
case. For linear problems they define just the minimum ofø2.
For nonlinear problems, if NR method is used independently
(though not as the inner optimizer in GA-NR), one has to make
sure that the results obtained from both conditions really
represent the global minimum ofø2, though not one of the local
minima, maxima or one of the saddle points. In Figure 4 we
show schematically aø2 function of the model parametersR,
which contains multiple minima (min), maxima (max) and
saddle points (s), and for which the conditions (4) and (23) hold.

From the mathematical point of view, these three categories
of the recovered values of model parameters can be distin-
guished from the values of the second-order derivatives ofø2.
From the point of view of reliable numerical recovery of the
most probable global minimum ofø2, the data should be
analyzed according to the numerical strategy suggested and
tested in ref 12 for the case of the global analyses of polarized
fluorescence decays for the case of membrane vesicles and
planar (macroscopically ordered) membranes, by means of the
GE optimizer, namely, (a) the analysis is repeated for very many
sets of initial guesses for the fitted parameters (they are scanned
between the reasonably defined upper and lower limits) and
(b) the obtained set ofø2 values is sorted out in sequence
between their maximum and minimum values. Such strategy
enables us to obtain a revealing insight into the multidimensional
distribution of theø2 values fulfilling the conditions (4) and
(23), projected onto the axes corresponding to the adjustable

Figure 3. Analysis of the decay parameters: (a, b) estimated values
of U1, U2 andW; (c) reconstructed spectral shape of TS emission band;
(d) coefficientCTS(λem); (e) decomposed steady-state emission bands
PS and TS.
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parameters. Consequently, the most probable coordinates of the
global minimum of ø2 can be obtained. In the case of NR
optimization method, the recovered set ofø2 contains the values
of ø2 that relate to multiple minima, maxima and saddle points.
This is in contrast to GE optimizer because this optimizer
ignores all maxima and saddle points of theø2 surface.
Therefore, a complete and realiable data analysis by means of
the NR algorithm requires much denser grid of the initial guesses
for the fitted parameters, as compared to the GE optimizer.
Below we discuss this point for the case of the GA-NR
optimizer, in which NR algorithm is the inner optimizer
controlled by the outer one GA.

If the NR method is embedded in the GA optimizer (i.e.,
NR is the inner optimizer in the GA-NR method), the GA
optimizer provides a trial population of vectorsq̃ (i.e., a trial
population of the complete sets of nonlinear parameters in
y(q̃,s,x)) and also a trial population of the complete sets of initial
guessess0 of linear and/or weakly nonlinear parameterss. Each
trial vectorq̃ returns the correspondingø2(q̃,s) function of vector
s. For the predefined number of iterations to be performed by
the NR algorithm, the correspondig set of vectorss̃ is obtained
from the optimization based on the recursion formula (25). Once
both populations of vectorsq̃ and s̃ are obtained, the core-
sponding set ofø2(q̃,s̃) values is known automatically and is
subjected to further steps of the GA optimizer, as was outlined
in section 2.

The application of NR optimizer to linear or weakly nonlinear
parameters may accelerate the convergence of the GA method,
as distinct from the case when all model parameters are treated
as if they were nonlinear. It is expected that in such cases the
GA-NR optimizer will converge at much smaller populations
of the complete sets of the model parameters and a much smaller
number of generations will be performed by GA optimizer. The
application of this method to the model parameters of an
effectively higher “degree” of the nonlinearity, or just to
nonlinear parameters, will lead to much slower convergence of
the GA-NR optimizer as compared to the case when they are
optimized directly by the outer optimizer (GA).

In the above proposed algorithm, the initial guessess0 are
selected by the GA optimizer (in principle they are fitted by
GA) because, in a general case, an external prediction of their
right values may represent a serious difficulty. Furthermore,
selection of the initial guesses fors by the GA algorithm
minimizes the risk of trapping the convergence of the optimiza-
tion process at a local minimum ofø2 with respect tosbecause,
in this case, a greater number of initial guessess0 is taken into
account simultaneously in the GA optimization method. For the
same reason, the recovered “best” estimatessm will describe
just the minimum ofø2 with respect tos, though not one of the
local maxima or one of the saddle points. In other words, the
GA optimizer, by testing and modifying simultaneously a greater
number of vectorss0 (with the same parallel process for vectors

q), drives the optimization toward the global minimum ofø2

with respect to both sets of the fitted parameters.
Very interesting is the case whenø2(q̃,s) is the nonquadratic

function of linear parameterss. As was mentioned at the
begining of this section, such cases occur for the model functions
which are multilinear combinations of nonlinear functions. Let
us consider one of the simplest examples of such a class of the
model functions, namely,

wheres) [a, b, c], andq̃1, q̃2 andq̃3 are the vectors of nonlinear
parameters returned temporarily by the GA optimizer (they
contain the model parameters that occur in vectorq̃). y(q̃,s,x)
depends linearly on each parameter ins, individually, butø2-
(q̃,s) is not a quadratic function ofs. It is important to stress
here that for weakly linear parameterss all the second-order
derivatives in eq 26 take the nonzero values, in a general case.
However, ifs represents the set of linear parameters,∂2y(q̃,s,xi)/
∂sm∂sn ) 0 whenm ) n, and∂2y(q̃,s,xi)/∂sm∂sn * 0 if m * n,
in a general case. As will be seen below, for the model functions
that are linear combinations of nonlinear functions, all second-
order partial derivatives take the zero values in eq 26. This
means that the second term in eq 26 distinguishes between the
linear, multilinear and (strongly or weakly) nonlinear model
functions ofs.

If vector s represents the set of linear parameters on which
ø2 depends quadratically, i.e., the model function is given by
linear combination of nonlinear functions (see eq 1), the second-
order partial derivative in (26) disappears, i.e.,∂2y(q̃,s,xi)/∂sm∂sn

) 0, and expression for the matrix elementsAmn simplifies to

and the expression forcm remains unchanged.
Let us assume thaty(q̃,s,x) contains a single linear parameter

a, i.e.

With this assumption,A andc become the scalarsA andc, and

Consequently, the recursion formula (25) becomes

From the above obtained recursion formula two very important
conclusions can be drawn. First, for linear parameters the NR
algorithm converges after the first iteration (i.e., any further
iteration returns the same value of the recovered linear parameter
because the value ofa(j+1) does not depend on the former value
a(j), according to (32)). Second, the values of initial guesses for
the linear parameters may be chosen in an arbitrary way because

Figure 4. Schematic presentation ofø2(R) function possessing multiple
minima, maxima and the saddle points.
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they do not effect the values of the optimized linear parameters
in the NR algorithm (i.e.,a(j+1) does not depend ona(j) begining
with the first iteration). These conclusions have general meaning
and they hold for a general form ofy(q̃,s,x) given by eq 1. As
is seen from the above, for the optimization problems in which
ø2 depends quadratically on linear paremeterss, the GA-NR
and GA-MLR optimizers are equivalent.

5. Discussion

In this article we have discussed and exemplified the
combined genetic algorithms (GA) and multiple linear regression
(MLR) optimization approach (GA-MLR) that applies to
nonlinear optimization problems, in which the nonlinear model
functions are linear combinations of nonlinear functions. As was
demonstrated, the GA-MLR optimizer exploits all advantages
of the genetic algorithms optimization method and is based on
a simple numerical trick consisting of appropriate combining
of two well-known optimization methods. GA-MLR optimizes
the nonlinear and linear model parameters in parallel, i.e., the
MLR optimizer is embedded in the GA one. The GA-MLR
approach involves the idea of separability of nonlinear and linear
fitted parameters, introduced, for the first time, by the variable
projection (VP) formalism,21 and which has a very advanced
and very strong mathematical background. The GA-MLR
(likewise GA-FOD and GA-NR introduced in ref 13) algorithm
is an intuitive treatment in which the multiple linear least-squares
method is the only one strictly mathematical “tool” employed.
VP and GA-MLR are two very different treatments to the same
class of nonlinear least-squares problems. The VP optimization
method has already been verified on very many optimization
problems.22 The GA-MLR method is a newly introduced
algorithm and, apart from the numerical tests demonstrated in
this article (and in ref 13 for a more complicated problem in
which the nonlinear function is obtained from the numerical
solution to the potential-restricted diffusion equation), it has not
been tested yet on real experimental data. However, the analysis
of a synthetic fluorescence decay surface for the two-excited-
state interconversion process, depicted in Scheme 1, has
displayed the simplicity and serious advantages of the GA-MLR
optimizer. This example provides some indications that enable
us to expect that the GA-MLR approach may find interesting
applications in some practical optimization problems. It seems,
for example, that the combination of the GA-MLR optimization
method with the algorithm outlined in ref 23, and designed for
the analysis of fluorescence decays of the compounds undergo-
ing the ICT, TICT and PT processes, may be a very promising
tool in some practical cases of photochemical studies of the
compounds undergoing the excited-state process of relatively
simple character, to which the discussed treatment may apply.

We have added a few important explanatory comments on
the application of the GA-NR to the optimization problems in
which the linear and/or weakly nonlinear model parameters,
fitted by the NR method, occur together with the nonlinear ones
being recovered by the GA optimizer. As was indicated, the
GA-NR method applies also to nonlinear problems in which
the model functions are multilinear combinations of nonlinear
functions. The properties of the GA-NR optimizer will be
displayed, in a more systematic and more detailed way,
elsewhere.

It has to be noted here that the GA-MLR and GA-NR
optimization methods are not the universal algorithms. Genetic
algorithms, likewise the gradient expansion optimization method,
apart from their intersting advantages, possess also some
disadvantages. For example, for particular shapes of theø2

surface in the space of fitted model parameters, the GA
optimizer converges very slowly. This happens in most of the
cases when this surface is very flat, and thereby, the convergence
of GA is very hardly achieved. In all such cases the GE
optimization method is much more efficient. In such cases GA-
MLR and GA-NR optimizers can be used for obtaining a set of
“good” initial guesses for the GE optimization.
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